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The structure of pyrrhotite (Fe1 � xS with 0.05� x� 0.125) has

been reinvestigated in the framework of the superspace

formalism. A common model with a centrosymmetric super-

space group is proposed for the whole family. The atomic

domains in the internal space representing the Fe atoms are

parametrized as crenel functions that fulfil the closeness

condition. The proposed model explains the x-dependent

space groups observed and the basic features of the structures

reported up to now. Our model yields for any x value a well

defined ordered distribution of Fe vacancies in contrast to

some of the structural models proposed in the literature. A

new (3 + 1)-dimensional refinement of Fe0.91S using the

deposited dataset [Yamamoto & Nakazawa (1982). Acta

Cryst. A38, 79–86] has been performed as a benchmark of

the model. The consistency of the proposed superspace

symmetry and its validity for other compositions has been

further checked by means of ab initio calculations of both

atomic forces and equilibrium atomic positions in non-relaxed

and relaxed structures, respectively.
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1. Introduction

Over the last few years, an increasing number of families of

compounds with variable composition have been analysed or

reanalysed within a unifying framework provided by the

superspace formalism (Evain et al., 1998; Perez-Mato et al.,

1999; Elcoro et al., 2000, 2001; Boullay et al., 2002, 2003; Lind &

Lidin, 2003; Michiue et al., 2005, 2006). All these families have

several common characteristics. Their members can be inter-

preted as the result of atomic occupational modulations over a

common parent structure, which is usually a member of the

family for a special or limiting composition. For each

composition, the three-dimensional structure can be viewed as

the regular stacking of a small number of different layers, their

sequence (and therefore the stacking period and the size of

the unit cell) being determined by the composition. In most

cases, while the building blocks in the parent structure are

complete layers, the building units for the rest of the members

of the family also include layers that result from an ordered

removal of atoms in the complete layers (vacancy layers), or

from an ordered substitution of some atoms by atoms of a

different element (defect layers). Usually, there are several

different (but equivalent by translation) vacancy or defect

layers. The vacancy or defect layers stack among the complete

ones forming ordered sequences that depend on composition.

Usually, within a stacking sequence there are (periodic or

aperiodic) blocks of consecutive layers which are globally

shifted with respect to the neighbouring blocks. Due to this

property, these compound families are sometimes called

crystallographic shear structures (Andersson & Wadsley,



1966). In the superspace description, the atomic voids in the

vacancy layers or the atomic substitution in the defect layers

are introduced using so-called crenel functions (Petřı́ček et al.,

1995), i.e. step-like (zero/one) occupational atomic modula-

tions yielding atomic domains (ADs) in internal space

analogous to those present in quasicrystals (Steurer, 2004). An

essential feature of the superspace description of these

families is the fulfilment by some ADs of the so-called close-

ness condition. According to this property, the lower limit of

the projection onto the internal space of an AD coincides with

the upper limit of the projection of another AD which is

equivalent by a superspace translation. This yields, in general,

real-space configurations where the atomic motifs or vacancies

represented by these ADs are distributed within the layers as

regularly as possible, producing so-called uniform sequences

(Elcoro et al., 2001). In general, the closeness condition forces

a specific linear relationship of the composition (associated

with the size of these ADs) with the modulation wavevector

(modulation parameter), and therefore with the size of the

superstructure unit cell. These are the basic features that allow

a global description in the superspace of a series of layered

compounds. Furthermore, it is an empirical observation that

the different space-group symmetries realised for different

compositions can be explained by a unique common super-

space group, while the atomic modulation functions (AMF)

describing the displacive distortions are very similar for all

members of a given series, and thus weakly dependent on the

length of the layer sequence.

The pyrrhotites, i.e. binary compounds of the type Fe1�xS,

can be described as layered compounds where sulfur layers

intercalate with complete and vacancy Fe layers, forming

stacking sequences that depend on x and can yield very long

periods (i.e. large unit cells) or even incommensurate config-

urations (Bertaut, 1953; Tokonami et al., 1972; Koto et al.,

1975; Yamamoto & Nakazawa, 1982; Powell et al., 2004). One

can therefore infer that these compounds might also be

described by a single superspace model. In 1982 the pyrrhotite

Fe0.91S was in fact the object of one of the first quantitative

structural analyses carried out using the superspace formalism

and was described as an incommensurate system (Yamamoto

& Nakazawa, 1982). Already in this work it was suggested that

the same approach could be appropriate for the description of

other members with different composition, including

commensurate ones. However, at this early stage in the

application of the superspace formalism, only continuous

occupational modulations with truncated short Fourier series

could be used. This implied that the structural models could

not include discontinuous atomic domains and therefore could

not describe configurations with fully ordered vacancies. In

this situation no relation between the modulation wavevector

and composition was presumed or detected, and furthermore

the superspace group that was proposed and used for the

specific composition investigated was not compatible with the

three-dimensional space groups of other commensurate

pyrrhotites such as Fe7S8 and Fe11S12. Nowadays, the refine-

ment of (3 + 1)-dimensional superspace models with occupa-

tional crenel functions describing discontinuous ADs along

the internal subspace is feasible with the program JANA2000

(Petřı́ček et al., 2000), and much empirical knowledge about

the use of the superspace formalism in ordered systems with

flexible composition has been gathered.

In this context, we present here a revision of the existing

experimental evidence on the pyrrhotites. Considering an

idealized layer model for several compositions, and following

the general rules observed in other families, we propose a

common superspace structural model with ADs fulfilling the

closeness condition. A linear relationship between composi-

tion and the modulation parameter is obtained. The super-

space symmetry underlying the whole family is found to be

different from that used by Yamamoto & Nakazawa (1982),

being a non-trivial supergroup of it. The model has been

crosschecked successfully with the published experimental

data. As a way of visualizing and confirming the superspace

symmetry that we propose, we also present the results of ab

initio calculations analysed in a novel form. The forces acting

on the atoms when located in idealized layered configurations

for several compositions have been calculated and embedded

in superspace. In addition, in some cases the structures have

been relaxed and the equilibrium configuration has been

calculated and analysed in superspace. In both cases, the

compliance with the symmetry of the proposed superspace

group was confirmed.

This paper is organized as follows: the next section gives a

summary of previous approaches to the structure description

of these compounds, paying special attention to the incom-

mensurate case analysed by Yamamoto & Nakazawa (1982).

Next, the new superspace model (based on discontinuous

ADs) and its symmetry is introduced. Subsequently, a

comparison with the available experimental evidence is given,

including a new refinement of the dataset of Yamamoto &

Nakazawa (1982) for Fe0.91S based on this model. Finally, the

results of the ab initio calculations are presented.

2. Pyrrhotite structures

Fe1�xS is commonly found in nature in the 0:05< x< 0:125

composition range. The structures can be interpreted as metal-

deficient NiAs-type structures, with the Fe vacancies distrib-

uted rather uniformly. The NiAs-type compound [which can

be considered the ideal (parent) structure for the pyrrhotite

family, with x ¼ 0] has an hexagonal structure with

aH ¼ bH ’ 3:5, cH ’ 5:7 Å, � ¼ � ¼ 90, � ¼ 120�, space

group P63=mmc and two independent atoms in the unit cell:

Fe at the origin and S at 1
3 ;

2
3 ;

1
4

� �
. The S atoms form a hexa-

gonal close-packed structure and the Fe atoms locate in the

octahedral interstices between successive S layers. For rational

values of the composition parameter in the pyrrhotite family,

the resulting structures are pseudo-orthorhombic with similar

a and b cell parameters, and a c unit length which depends on

composition. The three known structures of pyrrhotite have

monoclinic (pseudo-orthorhombic) symmetry, with similar

a ¼ 2aH and b ¼ 2aH þ 4bH unit-cell vectors. The c parameter

depends on the compositions: c ¼ 4cH for x ¼ 1=8 (Fe7S8,

known as 4C), c ¼ 6cH for x ¼ 1=12 (Fe11S12, known as 6C;
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Bertaut, 1953; Tokonami et al., 1972; Koto et al., 1975; Powell et

al., 2004) and the incommensurate Fe0.91S compound (Yama-

moto & Nakazawa, 1982) with x ’ 0:09. In this setting the

symmetries for commensurate 4C and 6C compounds have

been reported as F2=d11 and F1d1, respectively. A fourth

trigonal polymorph of Fe7S8 has also been observed (Fleet,

1971; Nakano et al., 1979; Keller-Besrest et al., 1983), but it is

outside the present study.

Fig. 1 shows the projection of the parent structure onto the

ðx; yÞ plane also showing the ideal orthorhombic cell corre-

sponding to the actual lattice of the 4C and 6C compounds.

Omitting the S layers (which are always fully occupied), the

commensurate cation-deficient pyrrhotite structures can be

described in a first approximation as the layer stacking of fully

occupied Fe layers (in the following denoted as F) and six-

atom layers of four kinds, A, B, C and D. The labels of these

four different layers indicate the positions of the two vacancies

(A, B, C or D positions in Fig. 1). The Fe7S8 structure (Bertaut,

1953; Tokonami et al., 1972; Powell et al., 2004) is characterized

by the layer stacking sequence FAFBFCFD. In this way the

vacancies form a double helix whose axis is parallel to the c

direction. The compound Fe11S12 was analysed in Koto et al.

(1975) and a model with some Fe disorder was proposed, but

not quantitatively refined. The vacancies were ‘divided’ into

two equivalent sites of consecutive layers with occupancy 1=2

for each position, leading to the stacking sequence

FPAPAFPBPBFPCPCFPDPD, where Pi represents a one-half

occupied i-position layer. Within fully ordered configurations

the closest layer arrangement would be obviously described by

the stacking sequence FFAFFBFFCFFD. In this sequence, the

vacancies also form a double helix, but with a different step

than in the case of x ¼ 1=8.

In Yamamoto & Nakazawa (1982) a third compound with

the composition x ’ 0:09 was investigated. The structure was

considered as incommensurately modulated with a modula-

tion wavevector of the form q ¼ �c�H ¼ 0:1805c�H (’ 2=11c�H)

and superspace group Pna21
1
2

1
2 �

� �
qq0 (equivalent to No. 33.3

in the International Tables for Crystallography (Janssen et al.,

1992).1 The structure was modelled with just two independent

ADs in the superspace unit cell, representing the S and Fe

atoms of the parent structure described in Fig. 1. According to

this model, the AD of sulfur is continuous and fully occupied

along the internal space. On the contrary, the AD associated

with the Fe atom is described by a continuous function, Pðx4Þ,

representing the occupation probability depending on the

internal coordinate x4. The refined occupation function of the

Fe atom showed a narrow valley along x4 with a low occupa-

tion probability, while the rest of the x4 interval was close to

full occupation (Fig. 2a, equivalent to Fig. 2d in Yamamoto &

Nakazawa, 1982). The displacive AMFs for S and Fe atoms

have small amplitudes, indicating that all atoms are very close

to the ideal layer positions (see Figs. 2a, b and c in Yamamoto

& Nakazawa, 1982). Therefore, the resulting structure could

also be viewed as the regular and alternate stacking of S and

Fe layers. The location in superspace of the occupation holes

in the function Pðx4Þ of the Fe atom means that some of the Fe

layers can be considered fully occupied, with eight atoms, and

other Fe layers have six fully occupied positions and two with
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Figure 1
Projection of the parent structure of pyrrhotites onto the ðx; yÞ plane.
Large circles represent Fe atoms with the same z coordinate, labelled with
four letters A, B, C and D. Small black dots and small open circles
represent S atoms in a plane above and below the Fe layer, respectively.

Figure 2
(a) Occupation function for the independent Fe atom in the model of
Yamamoto & Nakazawa (1982) (solid continuous line), and crenel
function representing the same atom in the model discussed in x3
(horizontal discontinuous line). (b) Electron density in the
ð1=8; 1=8; x3; x4Þ superspace plane. The horizontal line indicates that
the closeness condition is fulfilled.

1 We use here a different setting from that in Yamamoto & Nakazawa (1982).
The a and b axes have been interchanged to accommodate the setting used in
the analysis of the other pyrrhotites.



low occupation probabilities, reproducing a pattern of Fe

layers similar to that of the 4C commensurate structure. The

continuous description of the Fe occupation probability

however introduces some disorder in the positions of the

vacancies, with some sites having partial occupation.

3. Unique superspace model for the Fe1 � xS
compounds

The occupational modulation function Pðx4Þ for the Fe atoms

obtained by Yamamoto & Nakazawa (1982) using a Fourier

series parametrization is reminiscent of a crenel function of

width 1� x (� 0:91; see Fig. 2a). The fact that the reported

experimental modulus of the modulation wavevector fulfils

the relation � ¼ 2x within experimental accuracy, with x being

the iron deficiency, is a hint that points to a model with crenel

functions. Such a type of correlation is expected when crenel

functions are subject to the closeness condition (see x1).

Furthermore, the Fourier map of Fig. 2(b), equivalent to Fig.

6(a) in Yamamoto & Nakazawa (1982), indicates that the

closeness condition would be fulfilled by the inferred crenels.

Taking into account the information above and the fact that

there are four different (but equivalent by translation)

vacancy Fe layers, and two different S layers, the simplest

superspace model which gives the correct sequence for the 4C

(x ¼ 1=8) and 6C (x ¼ 1=12) phases is represented in Fig. 3.

For this construction we have followed the same general

principles explained in Elcoro et al. (2003). The thin and thick

bars represent the superposition of eight different ADs

located at the mentioned (x; y) coordinates for S and Fe

atoms, respectively. As the ADs representing Fe atoms are

crenel functions, the vertical bars are divided into segments of

width 1=4� x, labelled F and coloured in black, where eight

ADs superpose resulting in full occupation (layers with eight

atoms), and segments of width x coloured in grey where only

six ADs superpose, corresponding to six-atom layers, and

labelled A, B, C and D according to the (x; y) coordinates of

the missing ADs that define the layer vacancies (see Fig. 1).

The relation � ¼ 2x between the modulation parameter � and

the composition parameter is assumed. This relation forces the

closeness condition between the x4 segments corresponding to

vacancies/layers of the same type (see the dotted line in Fig.

3). The atomic structural parameters of this model are

summarized in Table 1, including the symmetry of the

displacive AMFs associated with the independent atoms. The

superspace group of this ideal construction is Pbnn 1
2

1
2 �

� �
qq0

(No. 52.7 in International Tables of Crystallography). As in

Yamamoto & Nakazawa (1982), to avoid the rational

components in the modulation wavevector, we have consid-

ered a non-standard centered unit cell, which implies the

doubling of the a and b unit-cell parameters with respect to

those used in a standard primitive unit cell. The symmetry

operations are given in Table 2, including centring translations.

At this point, it is important to compare the superspace

group used in Yamamoto & Nakazawa (1982) and that

proposed here. The essential difference is the addition of an

inversion centre. Apart from the interchange of the x and y

axes to have a common setting for the commensurate and

incommensurate structures, the origin here is that shown in

Fig. 1, in contrast to that used by Yamamoto & Nakazawa

(1982), which is located on the Fe atom [ðx; yÞ ¼ ð1=8; 1=8Þ

position in Fig. 1]. Therefore, in the setting used by Yamamoto

& Nakazawa (1982), the inversion centre of the postulated

superspace group here would be located at the non-trivial

point ð1=8; 1=8; 0Þ, and therefore may have been overlooked

there. In fact, the addition of the inversion centre introduces

the following reflection condition: hþ k ¼ 4n for ðh; k; 0; 0Þ

reflections (due to the operation fmzj1=4; 1=4; 1=2; 0g) and

this condition is indeed fulfilled by the dataset deposited by

Yamamoto & Nakazawa (1982).

The assumption of a higher symmetry has another impor-

tant consequence. In the structural model of Yamamoto &
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Figure 3
Ideal superspace model for the pyrrhotite compound family. White
(black) thin bars at x3 ¼ 1=4 ð3=4Þ represent S layers with ðx; yÞ atomic
coordinates given by the black dots and small open circles, respectively, in
Fig. 1. Thick bars at x3 ¼ 0 and 1=2 represent Fe layers. Black bars
denoted by the F letter are complete eight-atom layers, and A, B, C and D
bars represent the six-atom layers with two vacancies located at the
corresponding A, B, C and D locations of Fig. 1. The dotted line shows the
closeness condition.

Table 1
Structural parameters in the superspace description of the pyrrhotite
Fe1 � xS: centres of the independent ADs (x0

1; x0
2; x0

3; x0
4) without

modulation, width of the crenel functions �, point symmetry of the
ADs and symmetry of the [u1ðx4Þ, u2ðx4Þ, u3ðx4Þ] modulation functions
with respect to their centres, x0

4.

Atom x0
1 x0

2 x0
3 x0

4 �
Point
symmetry

Displacive
modulation

Fe 1/8 1/8 0 5/8 1� x 211 (even,odd,odd)
S 1/8 �1/24 3/4 1/8 1 121 (odd,even,odd)

Table 2
Centring translations and rotational symmetry elements of the
Pbnn 1

2
1
2 �

� �
qq0 superspace group, but with a different centring, with

q ¼ ð0; 0; �Þ as the modulation vector (see the text).

fEj0; 0; 0; 0g fEj1=2; 0; 0; 1=2g fEj0; 1=2; 0; 1=2g fEj1=2; 1=2; 0; 0g
fEj0; 0; 0; 0g fmxj0; 1=4; 0; 1=4g fmyj1=4; 0; 1=2; 1=4g f2zj1=4; 1=4; 1=2; 0g
fIj0; 0; 0; 0g f2xj0; 1=4; 0; 1=4g f2yj1=4; 0; 1=2; 1=4g fmzj1=4; 1=4; 1=2; 0g



Nakazawa (1982) the independent atomic domains occupy

general Wyckoff positions. This means that the modulations

have no symmetry restrictions. In a model with discontinuous

ADs this would mean that the centres of the ADs are not fixed

by symmetry. As a consequence, the closeness condition is not

forced by the relation � ¼ 2x and may only be introduced as

an additional ad-hoc restriction. However, if the superspace

group of Table 2 is assumed, the point symmetries of the Fe

and S independent domains are 211 and 121, respectively.

Thus, the centre of the AD representing the Fe atom is fixed in

the ðx3; x4Þ projection (see Fig. 3), and the closeness condition

is fulfilled once the modulation parameter � is given the value

2x. It is noticeable that, in the model of Yamamoto & Naka-

zawa (1982), despite not being fixed by the superspace group,

the positions of the low-occupancy Fe regions fulfil the

closeness condition. This fact reinforces the idea that the

superspace group of Table 2 is the correct symmetry of this

system.

Table 3 shows the possible three-dimensional space groups

resulting from the proposed superspace group, for commen-

surate values of the modulation parameter. The space group of

the resulting three-dimensional structure depends both on the

type of fraction for the modulation parameter � and on the

global initial phase of the modulation, i.e. the t value of the

three-dimensional section in the superspace construction.

When step-like (crenel) atomic domains are used, some t

values are problematic, namely those for which the three-

dimensional section crosses the limits of some atomic domains

(the points at which the occupation probability changes from 0

to 1). For these sections, the assumed three-dimensional

structure becomes ambiguous and a full consistency with the

assumed superspace symmetry would require the splitting of

the occupational probability, hence modifying the initial

structural model. These problematic t values typically corre-

spond to high-symmetry sections due to the closeness condi-

tion relating the modulation parameter with the width of the

crenels. In Table 3 the t values not having this problem are

indicated in bold. These are the three-dimensional

symmetries which are fully compatible with the

superspace model and are to be expected for

commensurate values of x. This table is consistent

with the space group reported for the 4C (� ¼ 1
4)

phase (Bertaut, 1953; Tokonami et al., 1972; Powell

et al., 2004), which corresponds to the case s ¼ 4N

and t ¼ 0. The symmetry F1d1 proposed for the 6C

(� ¼ 1=6) phase in Koto et al. (1975) is also in

accordance with the prediction for such a type of

modulation parameter, but for an arbitrary t value.

This is quite atypical, as special t sections corre-

sponding to higher symmetries are usually realised

in commensurate structures. This makes us suspect

that also in this case some symmetry may have

been overlooked. We infer from Table 3 that the

three-dimensional space group would instead be

F2dd if the iron vacancies are fully ordered or

F12=d1 in the case of some iron disorder.

4. New refinement of Fe0.91S

The validity of the proposed superspace model has been tested

by performing a new refinement of the x ’ 0:09 compound,

Fe0.91S, using the dataset provided by Yamamoto & Nakazawa

(1982). According to the reported value of the modulation

parameter � ¼ 0:1805, we have assumed a composition given

by x ¼ �=2 ¼ 0:0903 and therefore the width of the iron

crenel function was set to 1� x ¼ 0:90975. The refinement

was performed using the software package JANA2000

(Petřı́ček et al., 2000). Starting from the ideal structure defined

in Table 1 and outlined in Fig. 3, only average coordinates and

thermal coefficients2 were refined in the first steps of the

refinement with a resulting residual factor of 40%. Afterwards,

successive Fourier terms in the expansion series for the

displacive AMFs have been introduced for both the Fe and S

ADs. As the width of the crenel functions representing Fe

atoms is close to 1, there are no correlation problems between

the first harmonics used in the Fourier expansion series, and

no orthogonalized functions have been used. Thermal coeffi-

cients for the Fe AD have been modulated. The refinement is

stable and converges rapidly. This process led to a global

R ¼ 0:14 (R ¼ 0:11 for observed reflections), with 45 refinable

parameters with significant values. In the final model, the x, y

and z coordinates of the Fe and S atoms are described by four
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Table 3
Resulting three-dimensional space groups for the superspace group of
Table 2 with commensurate � ¼ r=s and different values of the t internal
coordinate.

Space groups in bold are non-problematic cases (see the text).

s ¼ odd t¼ 0ðmod 1=4sÞ t ¼ 1=8ðmod 1=4sÞ t¼ arbitrary
C1121=d C2221 C1121

s ¼ 4N t¼ 0ðmod 1=2sÞ t ¼ 1=4sðmod 1=2sÞ t¼ arbitrary
F2=d11 Fd2d Fd11

s ¼ 4N þ 2 t ¼ 0ðmod 1=2sÞ t¼ 1=4sðmod 1=2sÞ t¼ arbitrary
F12=d1 F2dd F1d1

Table 4
R values for main and satellite reflections of the refined model for x ¼ 0:0903 with data
from Yamamoto & Nakazawa (1982).

For comparison, the values obtained with the model proposed in this reference are included.
The latter values vary in some cases significantly from those reported in that publication.

Present model Yamamoto & Nakazawa (1982)

No. of Indep. ref./obs. 45 64
parameters (I>2�) RðobsÞ RðallÞ RðobsÞ RðallÞ Rint

Total 588/391 11.52 14.19 10.38 15.95 51.81
Main ref. (m ¼ 0) 71/45 6.23 6.49 5.76 6.57 50.96
Satellites m ¼ 1 134/120 14.05 16.51 12.73 19.83 52.84
Satellites m ¼ 2 126/75 7.16 9.48 10.00 16.58 50.41
Satellites m ¼ 3 135/109 27.31 35.78 21.99 35.04 54.72
Satellites m ¼ 4 122/44 60.22 88.13 35.48 82.46 51.75
GoF(obs)/GoF(all) 5.65 4.81
�max=�min 122.71 �5.81

2 We use the term thermal coefficient instead of the standard atomic
displacement parameter, because in this context they could be confusing.



harmonics. For S atoms an isotropic thermal coefficient has

been used and for the Fe AD an anisotropic thermal coeffi-

cient, modulated with four harmonics, was needed. The final R

values for main and satellite reflections are given in Table 4

and the resulting refined structural parameters are listed in

Table 5. Table 4 also includes the R values of the model

presented in Yamamoto & Nakazawa (1982). The two

refinements under the two models have similar quality. Some

partial indices are somewhat worse in the present model,

especially that for fourth-order observed satellites, but the

number of refined parameters is significantly smaller (45

against 64). If the number of parameters is increased up to a

similar value, fully comparable R values are obtained.

However, even under this significant decrease of the structural

parameters, first- and second-order satellites are better fitted

and as a consequence the total R value for all reflections is also

significantly lower.

The projection of the resulting independent ADs onto the

ðx3; x4Þ plane is outlined in Fig. 4. As can be seen in the figure,

the atomic displacements of the atoms with respect to the ideal

positions are small, with very smooth AMFs. The displace-

ments along the x and y directions with respect to the ideal

positions are also small. The reduction of the number of

parameters with respect to the model of Yamamoto &

Nakazawa (1982) is due to the higher symmetry used and the

better adapted description of the occupation modulation of

the Fe atom by means of a crenel function. It means that the

distribution of vacancies can also be considered ordered in this

more complex composition, as happens in the 4C phase. In

terms of layers, the aperiodic stacking sequence corresponding
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Figure 4
Projection onto the ðx3; x4Þ plane of two independent atomic domains of
Fe0.90975S, Fe in x3 ¼ 0 and S in x3 ¼ 1=4 according to the refined model
listed in Table 5.

Table 5
Refined parameters for Fe0.91S.

Cell parameters are a = 6.892, b = 11.952 and c = 5.744 Å. The fractional atomic average coordinate, atomic positional and DWF modulation coefficients are
modeled using Fourier expansion for the modulation. Modulation functions for a parameter � of an atom � defined in a restricted interval are given by the
following: U�

�ðx4Þ ¼
Pk

n¼0 A�
�;n sin 2�nx4 þ

Pk
n¼0 B�

�;n cos 2�nx4, where k is the number of modulation functions used for each atomic domain. Parameters with no
standard deviation (in parenthesis) are fixed by symmetry. (a) Parameters defining the position and width for the atomic domains in the four-dimensional structure.
(b) Parameters of the displacive modulations. (c) Parameters of the thermal coefficients. We have used the term thermal coefficient rather than the standard atomic
displacement parameter because in this context it could be confusing.

(a)
Atom x1 x2 x3 x4 �

Fe 0.1265 (5) 0.125 0 5/8 0.90975
S 0.125 �0.0426 (2) 0.75 – 1

(b)
AFe

x;1 ¼ 0:0130 ð5Þ AFe
y;1 ¼ �0:0042 ð2Þ AFe

z;1 ¼ �0:0062 ð5Þ BFe
x;1 ¼ 0:0130 BFe

y;1 ¼ 0:0042 BFe
z;1 ¼ 0:0062

AFe
x;2 ¼ 0:0019 ð8Þ AFe

y;2 ¼ 0 AFe
z;2 ¼ 0 BFe

x;2 ¼ 0 BFe
y;2 ¼ �0:0100 ð2Þ BFe

z;2 ¼ 0:0094 ð6Þ
AFe

x;3 ¼ �0:0044 ð5Þ AFe
y;3 ¼ 0:0016 ð2Þ AFe

z;3 ¼ 0:0050 ð5Þ BFe
x;3 ¼ 0:0044 BFe

y;3 ¼ 0:0016 BFe
z;3 ¼ 0:0050

AFe
x;4 ¼ 0 AFe

z;4 ¼ 0:0020 ð6Þ BFe
x;4 ¼ �0:0021 ð9Þ BFe

z;4 ¼ 0

AS
y;1 ¼ �0:0005 ð2Þ AS

z;1 ¼ �0:0106 ð8Þ BS
y;1 ¼ �0:0006 BS

z;1 ¼ 0:0106
AS

y;2 ¼ �0:0008 ð3Þ AS
z;2 ¼ 0 BS

y;2 ¼ 0 BS
z;2 ¼ �0:0142 ð9Þ

AS
z;3 ¼ 0:0037 ð7Þ BS

z;3 ¼ 0:0037
AS

z;4 ¼ �0:0032 ð9Þ BS
z;4 ¼ 0

(c)
UFe;0

U11 ;0
¼ 0:010 ð2Þ UFe

U22 ;0
¼ 0:016 ð1Þ UFe

U33;0
¼ 0:010 ð2Þ UFe

U12 ;0
¼ 0 UFe

u13 ;0
¼ 0 UFe

u23 ;0
¼ 0:0002 ð10Þ

US
uiso
¼ 0:0072 ð9Þ

AFe
U11 ;1
¼ �0:006 ð2Þ AFe

U22 ;1
¼ �0:004 ð1Þ AFe

U33;1
¼ �0:006 ð4Þ BFe

U11 ;1
¼ �0:006 BFe

U22;1
¼ �0:004 BFe

U33;1
¼ �0:006

AFe
U12 ;1
¼ 0:019 ð9Þ AFe

U13 ;1
¼ 0:0006 ð11Þ AFe

U23;1
¼ 0:0007 ð11Þ BFe

U12 ;1
¼ �0:019 BFe

U13;1
¼ �0:0006 BFe

U23;1
¼ 0:0007

AFe
U11 ;2
¼ �0:016 ð4Þ AFe

U22 ;2
¼ �0:003 ð2Þ AFe

U33;2
¼ �0:005 ð4Þ BFe

U11 ;2
¼ 0 BFe

U22;2
¼ 0 BFe

U33;2
¼ 0

AFe
U12 ;2
¼ 0 AFe

U13 ;2
¼ 0 AFe

U23;2
¼ 0:005 ð1Þ BFe

U12 ;2
¼ �0:008 ð1Þ BFe

U13;2
¼ �0:008 ð2Þ BFe

U23;2
¼ 0

AFe
U11 ;3
¼ �0:011 ð2Þ AFe

U22 ;3
¼ �0:007 ð2Þ AFe

U33;3
¼ �0:014 ð3Þ BFe

U11 ;3
¼ 0:011 BFe

U22;3
¼ 0:007 BFe

U33;3
¼ 0:014

AFe
U12 ;3
¼ 0:0028 ð9Þ AFe

U13 ;3
¼ �0:0006 ð11Þ BFe

U12 ;3
¼ 0:0028 BFe

U13;3
¼ �0:0006

AFe
U11 ;4
¼ 0 AFe

U33;4
¼ 0 BFe

U11 ;4
¼ 0:016 ð3Þ BFe

U33;4
¼ 0:022 ð3Þ

AFe
U12 ;4
¼ 0:002 ð1Þ AFe

U13 ;4
¼ �0:003 ð2Þ BFe

U12 ;4
¼ 0 BFe

U13;4
¼ 0



to this composition, close to x ¼ 1=11, is dominated by sets of

22 layers following the sequence (AFFBFFCFFDF)2 (or

equivalent ones) separated by ‘faults’ giving a final aperiodic

but deterministic sequence.

5. Superspace symmetry in ab initio calculations

The superspace model proposed above includes two essential

features that modify the approach of Yamamoto & Nakazawa

(1982). On one hand, the use of crenel functions with the

closeness condition implies full ordering of the iron vacancies

and a general relation between the composition and the

number of layers in the unit cell for a commensurate case, or a

linear relationship between the modulation wavevector and

the composition in an incommensurate case. On the other

hand, an inversion centre is added to the superspace symmetry

previously considered. This allows us to understand the

observed three-dimensional space groups as particular cases

of the underlying (3 + 1)-dimensional superspace symmetry.

We have shown above that the available experimental

evidence is consistent with this model and its symmetry.

However, some doubts can still be raised. Concerning the

assumption of vacancy ordering, as mentioned above, the 6C

compound has been claimed to have some disorder with

partial iron occupancies (Koto et al., 1975). We cannot rule out

the possibility that indeed some systematic disorder may

happen for some compositions, but it is clear that the detailed

experimental evidence for the other two compounds can be

consistently described with fully ordered configurations

following the general scheme given by our superspace model.

Even the 6C disordered configuration proposed in Koto et al.

(1975) complies with the symmetry properties of this model

and its main features become evident if the proposed partial

occupied iron vacancies are substituted by fully occupied and

vacant iron sites. Furthermore, a fully ordered model would

explain the 12-layer period of the compound.

A more delicate point is the symmetry that is actually

realised in these compounds. Establishing the presence or

absence of an inversion centre by means of X-ray diffraction

data is always difficult. The actual existence or not of an

inversion centre in the superspace symmetry underlying these

structures is of special importance, since the absence of the

inversion centre would mean that these systems, for some

compositions, would be polar through a small displacive

distortion with respect to a non-polar configuration with

symmetry given by either C1121=d or F2=d11. As these

systems have ferromagnetic or antiferromagnetic phases, this

would imply the possibility of a multiferroic character, with

coupling of ferroelectric and (anti)ferromagnetic properties

(Fiebig, 2005). Note that even for the centrosymmetric

superspace symmetry, for some compositions the three-

dimensional structures are also polar (see Table 3), but in

these cases no ferroelectric properties are expected. For these

compositions the ordered iron vacancy configuration is

already polar, and this polarity would not be in principle

switchable, as it would require a drastic vacancy reordering.

In order to further investigate the validity of the proposed

superspace group we have performed ab initio calculations to

analyze the fully relaxed atomic positions for the 4C and 6C

structures, and to obtain atomic forces in the ideal vacancy

configuration for a longer-period x ¼ 1=11 structure. The

results have been embedded and analysed in superspace. The

calculations have been carried out with SIESTA (Soler et al.,

2002), a density-functional code which is able to handle large

unit cells owing to its efficient strictly localized basis sets. Fe

and S pseudopotentials with core corrections (Louie et al.,

1982) were generated in the ground-state configurations, with

a cutoff radius of 0.894 Å for S and rs ¼ rd ¼ 1:15 and

rp ¼ rf ¼ 1:26 Å for Fe. We have used the revised Perdew–

Burke–Enzerhof exchange-correlation functional (Hammer et

al., 1999), an optimized (Junquera et al., 2001) double-	 plus

polarization basis set, with first-	 cutoffs for s, p and d orbitals

of 2.35, 2.30 and 3.02 Å for Fe, and 2.63, 3.21 and 2.56 Å for S,

and a 250 Ry cutoff for the real-space mesh. The forces on the

atoms follow from the Hellmann–Feynman theorem, as

implemented in the code.

We studied first the case x ¼ 1=8. Starting from an ideal

layer structure following the layer stacking sequence predicted

by the superspace model above and with the lattice para-

meters fixed to the experimental values, the atomic positions

were relaxed with no rotational symmetry restriction and the

equilibrium configuration was determined. The points in Figs.
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Figure 5
Case x ¼ 1=8. Comparison of experimental (Powell et al., 2004) (empty
circles) and calculated (solid circles) displacements of the Fe atoms along
the x (a) and y (b) direction. Atomic displacements with respect to the
ideal layer position are represented within a single independent AD in
superspace using the assumed superspace symmetry. The continuous line
depicts a fit of the calculated points using a symmetry adapted truncated
Fourier series.



5(a) and (b) are graphs of representative examples of the

results. The displacements along the x and y directions of the

Fe atoms with respect to the ideal structure are represented as

discrete points along the internal coordinate of superspace.

The calculated displacements have been embedded into a

single AD using the assumed superspace symmetry. The

smoothness of the AMF that can be extrapolated from these

discrete points confirms the adequacy of the postulated

superspace symmetry. The inversion centre in the superspace

group forces the AMF components along the x and y direc-

tions to be symmetric and antisymmetric, respectively, with

respect to the centre of the occupation domain (see Table 1).

The deviations of the calculated atomic displacements from

this expected symmetry are negligible. Furthermore, the

displacements agree reasonably well with those derived from

experiment (Powell et al., 2004), as shown in Fig. 5. This result

is especially significant considering that our prediction for the

magnetic order of the calculated ground state is ferromag-

netic, in contrast with the experimental observation of an

antiferromagnetic phase (Powell et al., 2004). This points to a

very weak magneto-structural coupling in these compounds

and allows us to take with confidence these calculations for

other compositions, despite the failure to reproduce the

magnetic state.

A similar study was carried out for the composition

x ¼ 1=12 (phase 6C). Fig. 6 depicts results analogous to those

in Fig. 5 for this case. The superspace embedding of the Fe

displacements from their ideal layer positions in the calculated

equilibrium configuration are compared with that corre-

sponding to the case where x ¼ 1=8 and with the experimental

AD of Fe in the incommensurate case where x ¼ 0:0903,

according to the refinement discussed above (Table 5). Again,

only very small deviations of the atomic displacements from

the expected symmetry or antisymmetry of the AMFs with

respect to the AD centre are obtained. A similarity of the

underlying AMFs for the commensurate cases with the one of

the incommensurate case can be clearly seen. A broad

common pattern can be observed in the three cases, but one

cannot speak about invariance of the displacive modulations

with composition, as differences are quite significant. The

(composition dependent) fluctuations of the AMFs along the z

direction around the centre of the AD are especially notice-

able. The general pattern of the AMF of iron along the z

direction can be easily interpreted. The displacements tend to

be larger at the extreme of the ADs where the Fe atoms have a

neighbouring Fe vacancy at the subsequent Fe layer, either

above or below. These atoms therefore suffer a strong

displacement towards the vacancy in order to locally

compensate the charge. The antisymmetry of the function is

forced by this behaviour. Regions of the AD which are closer

to the centre represent those Fe atoms which are the farthest

from Fe vacancies at the same ðx; yÞ position in other layers.

Therefore, they are expected to move less. The Fe atom

represented by the centre of the AD has nearest-neighbouring

Fe vacancies at the same distance along the vertical both

above and below, in accordance with its null displacement.

However, if only neighbouring vacancies along the vertical are

considered one cannot explain the fluctuating pattern of the

AMF. This must be due to the competing effect of vacancies

away from the vertical in neighbouring layers. Indeed, the AD

of Fe can be divided into segments according to the type of

local coordination they imply for the corresponding Fe atomic

sites considering the neighbouring layers below and above

along the z axis. One can then see that the AD regions where

the z displacement changes sign (with respect to the direction

where the nearest vertical vacancy is) correspond to x4

segments where a vacancy layer with non-vertical vacancies is

closer in the opposite direction.

research papers

700 Zunbeltz Izaola et al. � Pyrrhotite in superspace model Acta Cryst. (2007). B63, 693–702

Figure 6
Comparison of calculated displacements of Fe atoms along the x (a), y (b)
and z (c) direction for the compositions x ¼ 1=8, x ¼ 1=12 and the refined
AMFs for the incommensurate case x = 0.0903 (Table 5). Atomic
displacements have been embedded in superspace within a single
independent AD using the assumed superspace group. The continuous
line represents the AMF of the incommensurate case close to x ¼ 1=11.
Solid and empty circles correspond to x ¼ 1=8 and 1=12, respectively. The
dashed line represent a fit of the calculated points for the x ¼ 1=12 case.



An energy relaxation for a commensurate case corre-

sponding to a much more dense set of discrete points in the

superspace embedding than those discussed above would

require a much larger computational cost. For instance, for

x ¼ 1=11, which would be very close to the incommensurate

composition of the compound refined above, the number of

independent atoms is 42, in comparison to 12 in the case of

x ¼ 1=12. However, in this case we can have at least an

impression of the superspace symmetry underlying the struc-

ture relaxation if we embed in superspace the forces that the

atoms exhibit at the idealized perfect layer configuration,

without trying the much more costly process of determining

the relaxed structure that cancels these forces. In the same way

as the atomic positions, the calculated atomic forces can be

associated with a single independent AD for each atom type if,

after the superspace embedding, the assumed superspace

group is used to produce symmetry equivalent forces within a

single AD. Fig. 7 shows a scheme of the result obtained for the

case x ¼ 1=11 for the z component of the forces, which are in

general much larger than the forces on the ðx; yÞ plane. From

the 40 (44) forces on the Fe (S) atoms, that are represented in

the figure, 20 (22) are symmetry independent according to the

three-dimensional space group C1121=d that is fulfilled by the

structure (see Table 3). In fact, when the three-dimensional

structure is embedded into superspace, only 11 S and 10 Fe

atoms are realised within a single AD of each atomic type. The

grouping together of the 40 Fe and 44 S values is obtained

assuming the superspace group described in Table 2. The

symmetry elements relate the different ADs and can be used

to transport all discrete values realised in differents ADs into

a single independent one. Forces depicted as consecutive

along x4 are not symmetry-related in the three-dimensional

structure and correspond to atoms quite far apart in the three-

dimensional structure, but as the figure shows, they are clearly

correlated. Hence, not only do the atomic positions vary

smoothly along the internal space in a single AD, also other

physical properties (in this case the forces) behave as

continuous functions along the internal space. This demon-

strates the efficiency of the superspace model that has been

postulated. The systematic fluctuation of the forces along the

ADs reflects the division of the ADs into segments according

to the type of vacancy coordination of the atomic sites that

they are representing, as discussed above. In all cases, the

forces on the Fe atoms are directed towards the nearest

vacancy. The strongest forces are suffered by Fe atoms located

just below/above a vacancy along the c direction. In fact, it can

be seen that the AMF describing the iron z displacements of

the experimental structure represented in Fig. 6(c) follow a

pattern very similar to that of the forces depicted in Fig. 7.

6. Conclusions

The results presented here show that the pyrrhotite structures

can be described with a unique superspace model and a

common superspace symmetry. The main feature of the model

is the assumption of crenel (step-like) functions to represent

the Fe atoms in superspace. As a consequence, the resulting

three-dimensional structures are ordered. The superspace

symmetry of the common model corrects that which had been

proposed previously for a specific compound. The atomic

correlations described by the proposed superspace model

have been checked by ab initio calculations of the forces acting

on the atoms for an idealized configuration with perfect layers.

The embedding of the calculated atomic forces in the super-

space shows that they can also be described by continuous

modulation functions and they are interrelated according to

the proposed superspace group.
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Figure 7
Calculated atomic forces along the c direction in Fe10/11S for its ideal
perfect-layer configuration, with displacive AMFs set to zero. Forces are
represented embedded in superspace within a single AD for Fe (a) and S
(b). Black horizontal bars represent forces at atomic sites which
correspond to the depicted AD, while gray bars correspond to other
ADs that have been ‘transported’ by means of the superspace group
operations. The largest force is of the order of 0.7 eV Å�1.
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